Kähler Geometry of Toric Manifolds in Symplectic Coordinates

نویسنده

  • MIGUEL ABREU
چکیده

A theorem of Delzant states that any symplectic manifold (M,ω) of dimension 2n, equipped with an effective Hamiltonian action of the standard n-torus Tn = Rn/2πZn, is a smooth projective toric variety completely determined (as a Hamiltonian Tn-space) by the image of the moment map φ : M → Rn, a convex polytope P = φ(M) ⊂ Rn. In this paper we show, using symplectic (action-angle) coordinates on P×Tn, how all ω-compatible toric complex structures on M can be effectively parametrized by smooth functions on P . We also discuss some topics suited for application of this symplectic coordinates approach to Kähler toric geometry, namely: explicit construction of extremal Kähler metrics, spectral properties of toric manifolds and combinatorics of polytopes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler-sasaki Geometry of Toric Symplectic Cones in Action-angle Coordinates

In the same way that a contact manifold determines and is determined by a symplectic cone, a Sasaki manifold determines and is determined by a suitable Kähler cone. KählerSasaki geometry is the geometry of these cones. This paper presents a symplectic action-angle coordinates approach to toric Kähler geometry and how it was recently generalized, by Burns-Guillemin-Lerman and Martelli-Sparks-Yau...

متن کامل

Non-Kähler symplectic manifolds with toric symmetries

Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...

متن کامل

Numerical Kähler-Einstein metric on the third del Pezzo

The third del Pezzo surface admits a unique Kähler-Einstein metric, which is not known in closed form. The manifold’s toric structure reduces the Einstein equation to a single Monge-Ampère equation in two real dimensions. We numerically solve this nonlinear PDE using three different algorithms, and describe the resulting metric. The first two algorithms involve simulation of Ricci flow, in comp...

متن کامل

Symplectic Toric Manifolds

Foreword These notes cover a short course on symplectic toric manifolds, delivered in six lectures at the summer school on Symplectic Geometry of Integrable Hamiltonian Systems, mostly for graduate students, held at the Centre de Recerca Matemàtica in Barcelona in July of 2001. The goal of this course is to provide a fast elementary introduction to toric manifolds (i.e., smooth toric varieties)...

متن کامل

Non-compact Symplectic Toric Manifolds

The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000